2k^2-k+3+5k^2+3k-7=

Simple and best practice solution for 2k^2-k+3+5k^2+3k-7= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2k^2-k+3+5k^2+3k-7= equation:


Simplifying
2k2 + -1k + 3 + 5k2 + 3k + -7 = 0

Reorder the terms:
3 + -7 + -1k + 3k + 2k2 + 5k2 = 0

Combine like terms: 3 + -7 = -4
-4 + -1k + 3k + 2k2 + 5k2 = 0

Combine like terms: -1k + 3k = 2k
-4 + 2k + 2k2 + 5k2 = 0

Combine like terms: 2k2 + 5k2 = 7k2
-4 + 2k + 7k2 = 0

Solving
-4 + 2k + 7k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-0.5714285714 + 0.2857142857k + k2 = 0

Move the constant term to the right:

Add '0.5714285714' to each side of the equation.
-0.5714285714 + 0.2857142857k + 0.5714285714 + k2 = 0 + 0.5714285714

Reorder the terms:
-0.5714285714 + 0.5714285714 + 0.2857142857k + k2 = 0 + 0.5714285714

Combine like terms: -0.5714285714 + 0.5714285714 = 0.0000000000
0.0000000000 + 0.2857142857k + k2 = 0 + 0.5714285714
0.2857142857k + k2 = 0 + 0.5714285714

Combine like terms: 0 + 0.5714285714 = 0.5714285714
0.2857142857k + k2 = 0.5714285714

The k term is 0.2857142857k.  Take half its coefficient (0.1428571429).
Square it (0.02040816328) and add it to both sides.

Add '0.02040816328' to each side of the equation.
0.2857142857k + 0.02040816328 + k2 = 0.5714285714 + 0.02040816328

Reorder the terms:
0.02040816328 + 0.2857142857k + k2 = 0.5714285714 + 0.02040816328

Combine like terms: 0.5714285714 + 0.02040816328 = 0.59183673468
0.02040816328 + 0.2857142857k + k2 = 0.59183673468

Factor a perfect square on the left side:
(k + 0.1428571429)(k + 0.1428571429) = 0.59183673468

Calculate the square root of the right side: 0.769309258

Break this problem into two subproblems by setting 
(k + 0.1428571429) equal to 0.769309258 and -0.769309258.

Subproblem 1

k + 0.1428571429 = 0.769309258 Simplifying k + 0.1428571429 = 0.769309258 Reorder the terms: 0.1428571429 + k = 0.769309258 Solving 0.1428571429 + k = 0.769309258 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.1428571429' to each side of the equation. 0.1428571429 + -0.1428571429 + k = 0.769309258 + -0.1428571429 Combine like terms: 0.1428571429 + -0.1428571429 = 0.0000000000 0.0000000000 + k = 0.769309258 + -0.1428571429 k = 0.769309258 + -0.1428571429 Combine like terms: 0.769309258 + -0.1428571429 = 0.6264521151 k = 0.6264521151 Simplifying k = 0.6264521151

Subproblem 2

k + 0.1428571429 = -0.769309258 Simplifying k + 0.1428571429 = -0.769309258 Reorder the terms: 0.1428571429 + k = -0.769309258 Solving 0.1428571429 + k = -0.769309258 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.1428571429' to each side of the equation. 0.1428571429 + -0.1428571429 + k = -0.769309258 + -0.1428571429 Combine like terms: 0.1428571429 + -0.1428571429 = 0.0000000000 0.0000000000 + k = -0.769309258 + -0.1428571429 k = -0.769309258 + -0.1428571429 Combine like terms: -0.769309258 + -0.1428571429 = -0.9121664009 k = -0.9121664009 Simplifying k = -0.9121664009

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.6264521151, -0.9121664009}

See similar equations:

| 3(x+3)-4=17 | | 7(23x+25)=-43(-22-9x) | | 4(m-6)=44 | | 5t-(6-3r)=2t+18 | | 4-3(2p+1)=3p+11 | | 5x=x+14+x+17+8x+9 | | 12m=4m-16 | | -7b=2018 | | 5(x+7)=4(x+8) | | w^2=9(w-7) | | x^3-25x+36=0 | | 12p-7=5p-21 | | -6x-9=-7x+3 | | x+8=2x+32 | | 2.8-0.6(x+2)=2x+2(x-0.2) | | 18x^4+3x^3=0 | | -x-1-2y=15 | | 9+3w=7+7w | | 6x^2+7+3x^2+1= | | -2c-8=-4c+-12 | | 3(9+x)=15 | | 36x^2-24x=-85 | | 6(2a+10)=-5(a+5) | | 6.1-0.25(x+8)=0.7x+0.3(x-3) | | 5d+7+4d-2d-6=8 | | 6(3p+4)+5= | | 471.22= | | x^2+6y^2+4x-36y-2=0 | | 3+4p+8=2p+3p+12 | | 5x^6=x+14+8x+9+x+17 | | 3a-8=a+2 | | y=6000-75(0) |

Equations solver categories